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In this paper, we provide the first comprehensive study of user-chosen 4- and 6-digit PINs (n = 1705) collected
on smartphones with participants being explicitly primed for device unlocking. We find that against a throttled
attacker (with 10, 30, or 100 guesses, matching the smartphone unlock setting), using 6-digit PINs instead of
4-digit PINs provides little to no increase in security, and surprisingly may even decrease security. We also
study the effects of blocklists, where a set of “easy to guess” PINs is disallowed during selection. Two such
blocklists are in use today by iOS, for 4-digits (274 PINs) as well as 6-digits (2910 PINs). We extracted both
blocklists and compared them with six other blocklists, three for each PIN length. In each case we had a small
(4-digit: 27 PINs, 6-digit: 29 PINs), a large (4-digit: 2740 PINs, 6-digit: 291 000 PINs), and a placebo blocklist
that always excluded the first-choice PIN. For 4-digit PINs, we find that the relatively small blocklist in use
today by iOS offers little to no benefit against a throttled guessing attack. Security gains are only observed
when the blocklist is much larger. In the 6-digit case, we were able to reach a similar security level with a
smaller blocklist. As the user frustration increases with the blocklists size, developers should employ a blocklist
which is as small as possible while ensuring the desired security. Based on our analysis, we recommend that
for 4-digit PINs a blocklist should contain the 1000 most popular PINs to provide the best balance between
usability and security, for 6-digit PINs the 2000 most popular PINs should be blocked.
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1 INTRODUCTION
We provide the first study focused on the selection of Personal Identification Numbers (PINs) based
on data collected from users specifically primed for the smartphone setting. While authentication
on mobile devices has been studied in several contexts, including patterns [52] and passwords [37],
little is known about PINs used for mobile authentication. Despite the rise of biometrics, such as
fingerprint or facial recognition, devices still require PINs, e.g., after a restart or when the biometric
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fails. That is because the biometric does not replace knowledge-based authentication; access to a
device is still possible with a PIN even when using a biometric. Moreover, the presence of a biometric
may actually lead to a false sense of security when selecting knowledge-based authenticators [17].
Our study focuses on the PINs users choose to unlock their mobile devices. Previous work on

PINs was primarily focused on the context of banking, e.g., as part of the Chip-and-PIN system [13]
and also mainly relied on the analysis of digit sequences found in leaked text-based password
datasets since this data is more readily available [59]. Given the sparsity of information about PINs
in the context of mobile authentication, we sought to fill this vital knowledge gap by conducting
the first study (n = 1705) on the topic where participants either selected a 4- or 6-digit PIN, the
two predominant PIN lengths used for device unlock. In addition to only allowing participants
to complete the study on a smartphone, we also primed them specifically for the mobile unlock
authentication setting, reminding participants that the selected “PIN protects [their] data and is
used to unlock [their] smartphone.” While our study cannot speak to the memorability of the
selected PINs due to the short time duration, our qualitative feedback suggests that participants
took this prompt seriously and selected relevant PINs.

PINs of 4 and 6 digits only provide security when paired with system controls like lockouts and
delays that limit offline (or unthrottled) guessing. An unthrottled attacker who can bypass these
controls can quickly guess all PIN combinations. We instead consider a throttled attacker model to
empirically analyze the security of PINs when the system limits the guessing rate. This is usual
in the smartphone-unlocking setting where pauses are enforced after a certain number of wrong
guesses in order to slow attacks down. Guessing is then limited (or throttled) to, e.g., just 10, 30,
or 100 attempts in a reasonable time window, such as a few hours. In such a model, it is essential
to prioritize guessing resistance in the first few guesses. Our study found little benefit to longer
6-digit PINs compared to 4-digits. In fact, our participants tend to select more-easily guessed 6-digit
PINs when considering the first 40 guesses of an attacker.

As amechanism for improving PIN selection, we also studied howPINs are affected by blocklisting.
A blocklist is a set of “easy to guess” PINs, which triggers a warning to the user. Apple iOS devices
show the warning “This PIN Can Be Easily Guessed” with a choice to “Use Anyway” or “Change PIN.”
Previous work in text-based passwords has shown that users choose stronger passwords due to a
blocklist [31, 47], and recent guidance from NIST [25] concurs. To understand selection strategies
in the presence of a blocklist, we conducted a between-subjects comparison of PIN selection using
a number of different blocklists. This included two small (27 4-digit PINs and 29 6-digit PINs),
two large (2740 4-digit PINs and 291 000 6-digit PINs), and two blocklists (274 4-digit PINs and
2910 6-digit PINs) in use today on iOS devices, which we extracted for this purpose. To determine
if the experience of hitting a blocklist or the content of the blocklist itself drives the result, we
included placebo blocklists that always excluded the participants’ first choice. Finally, we included
both enforcing and non-enforcing blocklists, where participants were able to “click through” and
ignore the blocklist, the approach taken by iOS. Despite the popularity of blocklists and the positive
impact on textual passwords, our results show that currently employed PIN blocklists are ineffective
against a throttled attacker, in both the enforcing and non-enforcing setting. This attacker performs
nearly as well at guessing PINs as if there were no blocklist in use. To be effective, the blocklist
would need to be much larger, leading to higher user frustration. Our results show that for 4-digit
PINs a blocklist of about 10% of the PIN space may be able to balance the security and usability
needs, for 6-digit PINs the same effect can be achieved by blocking 0.2 % of the keyspace.

Finally, we collected both quantitative and qualitative feedback from our participants about their
PIN selection strategies, perceptions of their PINs in the context of blocklists, and their thoughts
about blocklisting generally. Overall, we find that despite having mostly negative sentiments about
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blocklist warnings, participants do perceive the PINs they select under a blocklist as more secure
without impacting the memorability and convenience, except in situations of a very large blocklist.
To summarize, we make the following contributions:

(1) We report on the security of 4- and 6-digit PINs as measured for smartphone unlocking,
finding that in the throttled setting, the benefit of 6-digit PINs is marginal and sometimes
worse than that of 4-digit PINs.

(2) Considering a realistic, throttled attacker model, we show how different blocklisting ap-
proaches influence PIN selection process for both security and usability, finding that blocklists
in use today offer little to no added security.

(3) Through quantitative and qualitative feedback, we explore users’ perception of security,
memorability, and ease-of-use of PIN-based authentication, finding that participants perceive
that blocklisting will improve their PINs without impacting usability, except for very large
blocklists.

(4) We provide guidance for developers on choosing an appropriately-sized PIN blocklist that
can influence the security in the throttled scenario, finding that a blocklist for 4-digit PINs
should consist of ∼1000 PINs to have a noticeable impact while minimizing the negative
effects. To achieve the same results in the 6-digit case, ∼2000 PINs should be blocked.

Note: We responsibly disclosed all our findings to Apple Inc.

2 RELATEDWORK
Research on PIN authentication for mobile devices is related to the larger area of mobile authenti-
cation. User preferences for different unlock methods for Android devices were studied by Harbach
et al. [28] in 2014. Since then, PINs have found new uses in encrypting mobile devices [4, 6, 41] and
biometrics [17] which require a PIN as part of the keying material and for fallback authentication
when biometrics fail. Today, PINs are also used in various situations in our everyday life, e.g., for
gym lockers and safes, but also smarthomes and voicemail accounts [16, 32].

The work most closely related to this research is the analysis of PINs in the context of Chip-and-
PIN systems done by Bonneau et al. [13], where they considered 4-digit PIN creation strategies for
banking customers for use with ATMs/credit cards. Bonneau et al. identified techniques used for
selecting PINs, where choosing (birth) dates/years was the most popular—also true in our setting.
As noted, an attacker can leverage the skewed distribution of PIN choices to improve the guessing
strategy. As a countermeasure, Bonneau et al. proposed the use of a blocklist containing the 100
most popular PINs. From our analysis, it seems that their suggestion may have formed the basis for
Apple iOS’s 4-digit blocklist.

Our work differs from Bonneau et al. in two significant ways. Foremost, Bonneau et al. were
primarily concerned with payment cards, not smartphone unlock authentication. Second, Bonneau
et al. did not collect new PINs but instead relied on digit sequences found in leaked passwords along
with PINs collected without the benefit of a controlled experiment [3]. Our work aims for greater
ecological validity by specifically priming users for this task. Our data suggests that using password
leaks may be an imperfect approximation for how users choose PINs for unlock authentication.

Wang et al. [59] have also analyzed the security of PINs – in this case without any specific usage
context. They report on comparing 4- and 6-digit PINs created by English and Chinese users. One
counter-intuitive finding is that 6-digit PINs are less resistant to online attacks, despite the key
space expansion from 4- to 6-digit PINs. Our results support the observation that in a rate limited
guessing scenario there may actually be no benefit of using 6-digit PINs at all and in certain cases
security even decreases. Yet, Wang et al. used PINs extracted from leaked, text-based password
datasets whereas we tend to increase the ecological validity of our results by collecting new PINs
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specifically primed for mobile authentication and the smartphone form-factor with its standard
PIN layout.

Blocklists have been considered in the context of PINs by Kim et al. [33]. They tested blocklists
for both 4-digit as well as 6-digit PINs, and concluded that a reasonably-sized blocklist could indeed
increase the security. Kim et al. used Shannon entropy and guessing entropy as the strength metric
and thus only consider an unthrottled, perfect knowledge attacker that will exhaustively guess the
PIN space [12]. This is a questionable attacker model especially given the sparsity of their dataset.
Kim et al. compared blocklists representing 2% and 32% of the possible PIN space and found the
large blocklist led to lower Shannon-entropy and lower offline guessing-entropy PINs, perhaps due
to the composition of Kim et al.’s large blocklist. In contrast, we show in our analysis of 4-digit
PINs that with a more realistic rate-limited, online attacker, a larger blocklist containing 27.4 %
of all possible PINs provides a benefit over a smaller one that blocklists only 2.7 %, differing from
the suggestion of Kim et al. regarding the effect of the size of the blocklist. We also make similar
observations in our analysis of 6-digit PINs.

Beyond PINs, another common knowledge-based mobile authentication mechanism are Android
unlock patterns, whereby a user selects a pattern that connects points on a 3x3 grid. Uellenbeck
et al. [52] showed that user selection of unlock patterns is highly biased, e.g., most patterns start
in the upper left corner. These results have been confirmed by other works [7, 35, 39, 58]. Most
relevant to our study, we compare the security of mobile unlock PINs to that of patterns and have
obtained datasets from related work [7, 35, 52, 58].
While less common, according to Harbach et al. [28] and our own measurement (see Table 4),

alphanumeric passwords are another option for users to unlock their mobile devices. For this
reason, we also consider alphanumeric passwords in our comparisons with PINs, as available in
leaked, text-based password datasets. Research has shown that the creation and use of passwords
on mobile devices can be cumbersome and users may create weaker passwords than they would do
on full-sized keyboards [26, 37, 46, 57, 63]. To counteract this, blocklists can be employed which is
also the recommendation for password-based authentication in general [51].

2.1 Difference to Conference Version
Parts of this work have been presented at the 41st IEEE Symposium on Security and Privacy in
May 2020 [36]. The results presented here substantially expand on this research by including data
from 485 additional participants providing 6-digit PINs, as well as 5 new analyses which were not
part of the conference version. In detail, we aligned the Control-6-digit treatment to the size of
Control-4-digit, and added three completely new 6-digit treatments: a non-enforcing iOS treatment
(iOS-6-digit-nCt), as well as two data-driven ones (DD-6-digit-29, and DD-6-digit-291000). We
provide extended analysis on the effects of using biometrics on the PIN strength (Section 5.1), and
we further investigate the underlying PIN selection strategies to gather more insights into how
users select their 6-digit PINs (Section 5.2). Furthermore, we analyze the effects of blocklists on PIN
creation and entry times (Section 6.1), investigate the bias in users’ selection of certain digits when
composing their PIN (Section 6.4), and study the shifts in PIN selection strategies after encountering
a blocklist warning (Section 6.5).

Summary of New Findings. Based on the new PIN data for 6-digit PINs, we make new recommenda-
tions for the size of the 6-digit blocklist; it should be ∼2000 PINs to ideally balance the positive and
negative effects. The creation and entry times confirm this result as they are marginally affected
compared to larger blocklist sizes. At the same time, we observe that users come up with more
complex selection strategies and the composition of PINs at this blocklist size, leading to higher
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security. An attacker who wants to guess a 6-digit PIN and is aware of a previously used 4-digit
PIN can abuse this knowledge.

3 BACKGROUND
In this section, we define our attacker model, describe the used datasets, and outline the extraction
of the two iOS PIN blocklists which we evaluate in our user study.

3.1 Attacker Model
When studying guessing attackers, there are two primary threat models. An unthrottled attacker
can guess offline, indefinitely, until all the secrets are correctly guessed, while a throttled attacker
is limited in the number of guesses, sometimes called an online attack. Google’s Android and
Apple’s iOS, the two most popular mobile operating systems, implement real-world rate limiting
mechanisms to throttle attackers because otherwise, it would be possible to simply guess all PIN
combinations. In our attacker model, we assume the rate limiting works as designed, and as such,
it is appropriate to consider a throttled attacker when evaluating security as this best matches the
reality of the attacks PINs must sustain for the mobile unlock setting.
The choice of the throttled attack model is further justified when considering mobile devices’

trusted execution environments (TEE), where the key for device encryption is stored in “tamper
resistant” hardware and is “entangled” with the user’s unlock secret [6]. This forces the attacker to
perform decryption (unlock) attempts on the device itself in an online way. Moreover, the TEE is
used to throttle the number of decryption attempts tremendously by enforcing rate limiting delays
which also survive reboots. There is some research [27, 34, 48] and even tools [18, 29, 60] that
exploit vulnerabilities in an attempt to escalate guessing to an unthrottled attacker. Moreover, there
are companies that sell commercial solutions like Azimuth [40], Cellebrite [15], Elcomsoft [1], and
GrayShift [14]. However, we consider such attacks out of scope. These exploits are usually bound
to a specific OS or device version (e.g., iPhone 5) or can only be run within certain timeframes (e.g.,
1 hour) after the last successful unlock [1, 61].

An overview of the currently enforced limits is given in Table 1. Apple’s iOS is very restrictive
and only allows up to 10 guesses [6] before the iPhone disables itself and requires a reset. Google’s
Android version 7 or newer are less restrictive with a first notable barrier at 30 guesses where
the waiting time increases by 10 minutes. We define the upper bound for a reasonably invested
throttled attacker at 100 guesses when the waiting starts to exceed a time span of 10 hours on
Android [5], but we also report results for less determined attackers at 10 guesses (30 s) and 30
guesses (10.5m) for Android. The iOS limit is 10 guesses (1.5 h) [6].
In our attacker model, we assume that the adversary has no background information about

the owner of the device or access to other side-channels. In such a scenario, the best approach
for an attacker is to guess the user’s PIN in decreasing probability order. To derive this order, we
rely on the best available PIN datasets, which are the Amitay-4-digit and RockYou-6-digit datasets
as defined below. Again, we only consider an un-targeted attacker who does not have additional
information about the victim. If the attacker is targeted, and is able to use other information and
context about the victim, e.g., via shoulder-surfing attack [8, 10, 11, 46] or screen smudges [9], the
attacker would have significant advantages, particularly in guessing 4- vs. 6-digit PINs [10].
In other parts of this work, we make use of blocklists. In those cases, we consider an attacker

that is aware and in possession of the blocklist. This is because the attacker can crawl the system’s
blocklist on a sample device, as we have done for this work. Hence, with knowledge of the blocklist,
an informed attacker can improve the guessing strategy by not guessing known-blocked PINs and
instead focusing on common PINs not on the blocklist.
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Table 1. Rate limiting on mobile operating systems.

To Make n Accumulated Waiting Time
Guesses Android 7, 8, 9, 10, 11 iOS 9, 10, 11, 12, 13, 14

1-5 guesses 0 s 0 s
6 guesses 30 s 1m 0 s
7 guesses 30 s 6m 0 s
8 guesses 30 s 21m 0 s
9 guesses 30 s 36m 0 s
10 guesses 30 s 1 h 36m 0 s
30 guesses 10m 30 s -
100 guesses 10 h 45m 30 s -
200 guesses 67 d 2 h 45m 30 s -

Table 2. Datasets for strength estimations and comparisons.

Kind Dataset Samples

4-digit PINs Amitay-4-digit [3] 204 432
4-digit PINs RockYou-4-digit [59] 1 780 587
6-digit PINs RockYou-6-digit [59] 2 758 490

3x3 Patterns “All” unlock patterns [22] 4 637
Passwords LinkedIn [24] 10 000
Passwords Pwned Passwords v7 [30] Top 10 000

3.2 Datasets
Perhaps the most realistic 4-digit PIN data is from 2011 where Daniel Amitay developed the iOS
application “Big Brother Camera Security” [3]. The app mimicked a lock screen allowing users
to set a 4-digit PIN. Amitay anonymously and surreptitiously collected 204 432 4-digit PINs and
released them publicly [3]. While collected in an uncontrolled experiment, we apply the dataset
(Amitay-4-digit) when guessing 4-digit PINs, as well as to inform the selection of our “data-driven”
blocklists. As there is no similar 6-digit PIN data available to inform the attacker, we rely on
6-digit PINs extracted from password leaks, similar to Bonneau et al.’s [13] and Wang et al.’s [59]
method. PINs are extracted from consecutive sequences of exactly n-digits in leaked password data.
For example, if a password contains a sequence of digits of the desired length, this sequence is
considered as a PIN (e.g., PW: ab3c123456d→ PIN: 123456, but no 6-digit PINs would be extracted
from the sequence ab3c1234567d). By following this method, we extracted 6-digit PINs from the
RockYou password leak, which we refer to as RockYou-6-digit (2 758 490 PINs). We also considered
6-digit PINs extracted from other password leaks, such as the LinkedIn [24] dataset, but found no
marked differences between the datasets.

To provide more comparison points, we consider a number of other authentication datasets listed
in Table 2. For example, we use a 3x3 Android unlock pattern dataset described by Golla et al. [22],
combining four different datasets [7, 35, 52, 58]. It consists of 4637 patterns with 1635 of those
being unique. In addition, we use a text-password dataset. Melicher et al. [37] found no difference
in strength between passwords created on mobile and traditional devices considering a throttled
guessing attacker. Thus, we use a random sample of 10 000 passwords from the LinkedIn [24] leak
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Fig. 1. The installation used to extract the iOS blocklists.

and use the Pwned Passwords v7 [30] list to simulate a throttled guessing attacker to estimate the
guessing resistance for the sampled LinkedIn passwords as a proxy for mobile text passwords.

3.3 Extracting the iOS Blocklists
As part of our set of blocklists, we also consider a blocklist of “easily guessed” 4/6-digit PINs as
used in the wild by Apple, which we obtained via brute-force extraction from an iPhone running
iOS 12. We were able to verify that blocklisting of PINs is present on iOS 9 throughout the latest
version iOS 14, and we also discovered that Apple updated their blocklist with the deployment
of iOS 10 (e.g., the PIN 101471 is blocked on iOS 10.3.3, but is not on iOS 9.3.5). In theory, it is
possible to extract the blocklist by reverse engineering iOS, yet, we found a more direct way to
determine the blocklist via brute-force: During device setup, when a PIN is first chosen, there is no
throttling. To test the membership of a PIN, one only needs to enter all the PINs and observe the
presence of the blocklist warning, and then intentionally fail to re-enter the PIN to be able to start
over. We constructed a device to automate this process using a Raspberry Pi Zero W equipped with
a Pi Camera Module (8MP), as depicted in Figure 1. The Raspberry Pi emulates a USB keyboard,
which is connected to the iPhone. After entering a PIN, the camera of the Raspberry Pi takes a
photo of the iPhone screen. The photo is sent to a remote server, where it is converted to grayscale
and thresholded using OpenCV. Subsequently, the presence of the blocklist warning, as depicted in
Figure 4, is detected by extracting the text in the photo using Tesseract OCR.
The extraction of all 10 000 4-digit PINs took ∼ 9 hours. Testing all 1 million 6-digit PINs took

about 30 days using two setups. We repeated the process for 4-digit PINs multiple times, tested lists
of frequent 6-digit PINs, and verified the patterns found in the PINs. Moreover, we validated all
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blocked PINs multiple times. We refer to these two lists as the iOS-4 and iOS-6 blocklists. 1 In total,
the 4-digit blocklist contains 274 PINs and includes common PINs as well as years from 1956 to
2015, but its composition is mostly driven by repetitions such as aaaa, abab, or aabb. The 6-digit
blocklist contains 2910 PINs and includes common PINs as well as ascending and descending digits
(e.g., 543210), but its composition is, again, mostly driven by repetitions such as aaaaaa, abcabc, or
abccba. The common PINs blocked by Apple overlap with a 4-digit blocklist suggested by Bonneau
et al. [13] in 2012 and the top 6-digit PINs reported by Wang et al. [59] in 2017.

4 USER STUDY
In this section, we outline the treatment conditions, the user study, and the collected data. We also
discuss limitations and our ethical considerations. Appendix A.1 outlines the entire questionnaire.

4.1 Study Protocol and Design
We conducted a user study of 4- and 6-digit PINs using Amazon Mechanical Turk (MTurk) with
n = 1705 participants. To mimic the PIN creation process in our browser-based study, participants
were restricted to mobile devices by checking the user-agent string. We applied a 12-treatment,
between-subjects study protocol for the PIN selection criteria, e.g., 4- vs. 6-digit with or without
blocklisting. The specifics of the treatments are discussed in detail in Section 4.2. At the end of the
study, we collected 851 and 854 PINs, 4- and 6-digits respectively, for a total of 1705 PINs as our
core dataset. These PINs were all selected, confirmed, and recalled. We additionally recorded all
intermediate PIN selections, such as what would happen if a selected PIN was not blocked and
the participant did not have to select a different PIN. For more details of different kinds of PINs
collected and analyzed, refer to Table 7. All participants were exposed to a set of questions and
feedback prompts that gauged the security, memorability, and usability of their selected PINs, as
well as their attitudes towards blocklisting events during PIN selection.

The survey itself consists of 10 parts. Within each part, to avoid ordering effects, we applied
randomization to the order of the questions that may inform later ones; this information is also
available in Appendix A.1. The parts of the survey are:
(1) Informed Consent: All participants were informed of the procedures of the survey and had to

provide consent. The informed consent notified participants that they would be required to
select PINs in different treatments, but did not inform them of any details about blocklisting
that might be involved in that selection.

(2) Agenda: After being informed, participants were provided additional instructions and details
in the form of an agenda. It stated the following: “You will be asked to complete a short
survey that requires you to select a numeric PIN and then answer some questions about it
afterwards. You contribute to research so please answer correctly and as detailed as possible.”

(3) Practice: Next, participants practiced with the PIN entry screen, which mimics typical PIN
selection on mobile devices, including the “phoneword” alphabet on the virtual PIN pad. The
purpose of the practice round was to ensure that participants were familiar with the interface
prior to selecting a PIN. There was clear indication during the practice round that this was
practice and that participants would begin the primary survey afterwards.

(4) Priming: After familiarization and before selection, participants were further primed about
mobile unlock authentication and PINs using language similar to what iOS and Android use
during PIN selection. A visual of the priming is in Figure 2. A lock icon was used to prime
notions of security, and users were reminded that they will need to remember their PIN for

1To foster future research on this topic, we share the described blocklists and the PIN datasets at: https://this-pin-can-be-
easily-guessed.github.io.
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Fig. 2. Priming information pro-
vided before the participants
were asked to create a PIN.

Fig. 3. The design of the page
on which we asked the partici-
pants to create a PIN.

Fig. 4. Blocklist warning with
the ability to “click through.”

Fig. 5. Blocklist warning
without the ability to “click
through.”

the duration of the study without writing it down. Participants must click “I understand” to
continue. The qualitative feedback shows that the priming was understood and followed
with some participants even stating that they reused their actual PIN.

(5) Creation: The participants then performed the PIN creation on the page shown in Figure 3.
The PIN was entered by touching the digits on the virtual PIN pad. As usual, users had to
enter the PIN a second time to confirm it was entered correctly. Depending on the treatment
(see Section 4.2), the users either selected a 4- or 6-digit PIN and did or did not experience a
blocklist event. In Figure 4 and Figure 5 we depicted the two blocklist warnings which either
allowed participants to “click through” the warning (or not). The feedback was copied to
directly mimic the wording and layout of a blocklist warning used by Apple since iOS 12.

(6) Blocklisting Followup: After creation, we asked participants about their attitudes and strategies
with blocklisting. If the participants experienced a blocklist event, we referred back to that
event in asking followup questions. Otherwise, we asked participants to “imagine” such an
experience. These questions form the heart of our qualitative analysis (see Section 6.7).

(7) PIN Selection Followup: We asked a series of questions to gauge participants’ attitudes towards
the PIN they selected with respect to its security and usability, where usability was appraised
based on ease of entry and memorability (see Section 6.6). As part of this questionnaire, we
also asked an attention check question. We excluded the data of 19 participants because we
could not guarantee that they followed our instructions completely.

(8) Recall: On this page, participants were asked to recall their earlier selected PIN. Although the
two prior parts formed distractor tasks we do not expect that the recall rates measured here
speak broadly for the memorability of these PINs. As expected, nearly all participants could
recall their selected PIN.

(9) Demographics: In line with best practice [43], we collected the demographics at the end,
including participants’ age, gender, IT background, and their current mobile unlock scheme.

(10) Honesty/Submission: Finally, we asked if the participants provided “honest” answers to the best
of their ability. We informed them that they would be paid even if they indicated dishonesty.
Using this information in combination with the attention check described above, we excluded
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Table 3. Overview of studied treatments.

Treatment Short Name Blocklist Size Click-thr.
4
di
gi
ts

Control-4-digit Con-4 − − −

Placebo-4-digit Pla-4 First choice 1 ✗

iOS-4-digit-wCt iOS-4-wC iOS 4-digit 274 ✓

iOS-4-digit-nCt iOS-4-nC iOS 4-digit 274 ✗

DD-4-digit-27 DD-4-27 Top Amitay 27 ✗

DD-4-digit-2740 DD-4-2740 Top Amitay 2740 ✗

6
di
gi
ts

Control-6-digit Con-6 − − −

Placebo-6-digit Pla-6 First choice 1 ✗

iOS-6-digit-wCt iOS-6-wC iOS 6-digit 2910 ✓

iOS-6-digit-nCt iOS-6-nC iOS 6-digit 2910 ✗

DD-6-digit-29 DD-6-29 Top RockYou 29 ✗

DD-6-digit-291000 DD-6-291000 Top RockYou 291000 ✗

the data of 19 participants to ensure the integrity of our data. After affirming honesty (or
dishonesty), the survey concluded and was submitted.

4.2 Treatments
We used 12 different treatments: 6 treatments for 4-digit PINs and 6 treatments for 6-digit PINs.
The details for each treatment can be found in Table 3.

4.2.1 Control Treatments. For each PIN length, we had a control treatment, Control-4-digit and
Control-6-digit, that primed participants for mobile unlock authentication and asked them to
select a PIN without any blocklist interaction. These PINs form the basis of our 4- and 6-digit
mobile-authentication primed PIN dataset. In total, we have 231 control 4-digit PINs and 236
control 6-digit PINs. We also created two additional datasets, First-Choice-4-digit (851 PINs) and
First-Choice-6-digit (854 PINs), by combining the control PINs with those chosen by participants
from other treatments in their “first attempt” before having been subjected to any blocklist.

4.2.2 Blocklist Treatments. The remaining treatments considered PIN selection in the presence
of a blocklist. There are two types of blocklist implementations: enforcing and non-enforcing. An
enforcing blocklist does not allow to continue as long as the selected PIN is blocked; the user must
select an unblocked PIN. A non-enforcing blocklist warns the user that the selection is blocked, but
the user can choose to ignore the feedback and proceed anyway. We describe this treatment as
providing the participant an option to click through. Otherwise, the treatment uses an enforcing
blocklist. Visuals of the non-enforcing and enforcing feedback can be found in Figure 4 and 5.

Placebo Blocklist. As we wanted to determine if the experience of hitting a blocklist or the content
of the blocklist itself drive the results, we included a placebo treatment for both 4- and 6-digit PINs
(Placebo-4-digit and Placebo-6-digit). In this treatment, the user’s first choice PIN was blocked,
forcing a second choice. As long as the second choice differed from the first, it was accepted.

iOS Blocklist. For this treatment, we included the blocklists used on Apple’s iOS 13. The 4-digit
iOS blocklist contains 274 PINs (2.74 % of the available 4-digit PINs), and the 6-digit iOS blocklist
contains 2910 PINs (0.291 % of the available 6-digit PINs). These blocklists provide measurements
of real scenarios for users selecting PINs on iOS devices. As iOS allows users to “click through”
the blocklist warning and use their blocked PIN anyway, we implemented our blocklisting for
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the iOS condition in the same way (i.e., conditions iOS-4-digit-wCt and iOS-6-digit-wCt). To
understand the effect of non-enforcing blocklists, we also tested enforcing versions of the iOS
blocklists (iOS-4-digit-nCt and iOS-6-digit-nCt).

Data-Driven Blocklists. We considered two blocklists for each PIN length that are significantly
smaller and larger than the iOS blocklist. The blocklists were constructed using the most frequently
occurring PINs in the Amitay-4-digit and RockYou-6-digit dataset. We refer to the 4-digit treat-
ments as DD-4-digit-27 and DD-4-digit-2740 because the blocklists contain 27 and 2740 PINs
respectively. Following this, we blocked the 29 most frequent PINs in the treatment DD-6-digit-29
while 291 000 were blocked in DD-6-digit-291000.

When comparing the two data-driven 4-digit blocklists and the one used in iOS, it can be seen
that they are differently composed. While 22, i.e., 82 % of the PINs contained in DD-4-digit-27 are
blocked in iOS, there are also 5 PINs which are not. Surprisingly, these PINs correspond to simple
patterns like 0852 which is a bottom-up pattern across the PIN pad or 1379, the four corners of the
pad chosen in a left-to-right manner. Now, when extending the comparison to the DD-4-digit-2740
blocklist we see that 258 of the 274 PINs from the iOS blocklist, i.e., 92 %, are also blocked by our
large data-driven blocklist. The remaining 16 PINs all follow the same repetitive aabb scheme, e.g.,
0033, 4433, or 9955. Interestingly, only one of those PINs, 9933, was selected in our study which
shows that double repetitions are presumably not as common as Apple expects.

Similar observations can be made in the 6-digit case when comparing the iOS blocklist with the
two data-driven versions. There are 3 PINs (159357, 147852, 246810) in our DD-6-digit-29 blocklist
with only 29 PINs which are not rejected by Apple’s blocklist with 2910 entries. Of those 3 PINs, at
least 159357 and 147852 follow straightforward patterns which one may expect to be blocked. The
intersection with the large data-driven blocklist covers 2314 PINs, i.e., 80 % of the iOS blocklist. The
596 PINs which are solely rejected by Apple follow three schemes: ababac (323 PINs), abccba (258
PINs), and abcabc (15 PINs). Again, those schemes are not very popular across our participants:
only 7 % of the PINs which were selected in our study follow them.

4.3 Recruitment and Demographics
Using Amazon’s Mechanical Turk (MTurk), we recruited a total of 1944 participants. After excluding
a portion due to invalid responses to attention tests or survey errors, we had 1705 participants
remaining. We required our participants to be 18 years or older, reside in the US (as checked by
MTurk), and have at least an 85 % approval rate on MTurk. The IRB approval required focusing on
participants residing in the US, but there may be a secondary benefit to this: US residents often do
not have chip-and-PIN credit cards (although, they do use 4-digit ATM PINs), in contrast to residents
in Europe or Asia, and thus may associate PIN selection more strongly with mobile device locking.
In any case, participants were explicitly primed for the mobile device unlock setting. Participants
indicated they understood this instruction, and their qualitative responses confirm this.
We also reviewed all of the participants’ responses for consistency, including answers to at-

tention check questions, the honesty question, and speed of entry. We removed 19 who provided
inconsistent data but did not “reject” any participants on Amazon Mechanical Turk. Participants
were compensated with $ 1 (USD) for completion; the survey took on average 5 minutes for an
hourly rate of $ 12.

Demographics and Background. As typical on MTurk, our sample is relatively young and better
educated than the general US population. Of the participants, 923 identified as male (54 %) while
768 (45 %) identified as female (1 % identified as other or preferred not to say), and the plurality
of our participants were between 25 and 34 years old (48 %). Most participants had some college
(21 %) or a bachelor’s degree (42 %), and few (11%) had a master’s or doctoral degree. While 28 %
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Table 4. Usage of mobile unlock authentication schemes.

Primary Scheme No. % Secondary Scheme No. %

Fingerprint 779 46 %

4-digit PIN 387 50 %
6-digit PIN 215 28 %

Pattern 109 14 %
Other 68 8 %

Face 263 15 %

4-digit PIN 113 42 %
6-digit PIN 104 40 %

Pattern 23 9 %
Other 23 9 %

Other Biometric 33 2 %

4-digit PIN 10 30 %
6-digit PIN 3 9%

Pattern 16 49 %
Other 4 12 %

4-digit PIN 218 13 %
6-digit PIN 59 4 %

Pattern 88 5 % No secondary scheme used.
Other 76 4 %
None 189 11 %

described having a technical background, 69 % described not having one. We have the full details of
the demographics responses in Appendix A.2 in Table 10.

Smartphone OS. We asked participants which operating system they use on their primary smart-
phone. Slightly more than half, 1008 (59 %), of the participants were Android users, while 676 (40 %)
were iOS users. We collected browser user-agent strings during the survey, and confirmed similar
breakdowns, suggesting most participants used their primary smartphone to take the survey. A
detailed breakdown can be found in the Appendix A.3 in Table 11.

Unlock Schemes Usage. Aswe focus onmobile authentication, wewere interested in learning about
the kind of mobile authentication our participants use, recalling both biometric and knowledge-
based authentication may be in use on a single device. We first asked if a biometric was used and
then asked what authentication participants use instead or as a backup for the biometric, e.g., when
it fails. While Table 4 shows a compressed description, a detailed breakdown can be found in the
Appendix A.3 in Table 11. For knowledge-based authenticators, considered here, PINs are the most
common: 43 % described using a 4-digit PIN, 22 % using a 6-digit PIN, and 3 % using a PIN of other
length. The second most common form of knowledge-based authentication are Android unlock
patterns at 14 %, and 57 participants (or 3 %) reported using an alphanumeric password. In our
study, 189 participants (11 %) reported not using any locking method.

4.4 Ethical Considerations
All of the survey material and protocol was approved by our Institutional Review Board (IRB).
Beyond meeting the approval of our institution, we worked to uphold the ethical principles outlined
in the Menlo Report [56].

In practicing respect for persons and justice, beyond informing and getting consent, we also sought
to compensate participants fairly at least at the minimum wage of the municipality where the
oversight was performed. Since some of our treatments may frustrate participants, e.g., where the
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blocklist was comparatively large (DD-4-digit-2740 & DD-6-digit-291000), we also compensated
those who returned the survey and notified us of their frustration.
Additionally, as we are dealing with authentication information, we evaluated the ethics of

collecting PINs and distributing blocklists in terms of beneficence. With respect to collecting PINs,
there is risk in that participants may (and likely will) expose PINs used in actual authentication.
However, there is limited to no risk in that exposure due to the fact that PINs are not linked to
participants and thus cannot be used in a targeted attack. A targeted attack would need proximity
and awareness of the victim, of which, neither is the case for this study. Meanwhile, the benefit of the
research is high in that the goal of this research is to improve the security of mobile authentication.
Similarly, distributing blocklists increases social good and scientific understanding with minimal
risk as a determined attacker likely already has access to this material.

Finally, we have described our procedures transparently and make our methods available when
considering respect for law and public interest. We also do not access any information that is not
already publicly available.

4.5 Limitations
There are a number of limitations in this study. Foremost among them is the fact that the participant
sample is skewed towards mostly younger users residing in the US. However, as we described pre-
viously, there may be some benefit to studying PINs from US residents as they are less familiar with
chip-and-PIN systems and may be more likely to associate PINs directly with mobile unlocking. We
argue that our sample provides realizable and generalizable results regarding the larger ecosystem
of PIN selection for mobile authentication. Further research would be needed to understand how
certain populations, for example, more age-diverse ones select PINs [42]. For populations from
different locations, there is some knowledge about the differences between English-speaking and
Chinese users [59], but other populations have also not been studied yet.

Another limitation of the survey is that we are asking participants to select PINs while primed for
mobile authentication and there is a risk that participants do not act the same way in the wild. We
note that similar priming is used in the authentication literature for both text-based passwords for
desktop [53, 54] and mobile settings [37], and these results generalize when compared to passwords
from leaked password datasets [55]. We have similar results here. When compared to the most
realistic dataset previously available, Amitay-4-digit, the most common 4-digit PINs collected in
our study are also present in similar distributions to Amitay [3]. Also, in analyzing the qualitative
data, a number of participants noted that they used their real unlock PINs.

While this presents strong evidence of the effectiveness of mobile unlock priming, we, unfortu-
nately, do not have any true comparison points, like what is available for text-based passwords.
There is no obvious analog to the kinds of attacks that have exposed millions of text-based pass-
words that would similarly leak millions of mobile unlock PINs. Given the available evidence,
we argue that collecting PINs primed for mobile unlock authentication provides a reasonable
approximation for how users choose PINs in the wild.
Due to the short, online nature of our study, we are limited in what we can conclude about

the memorability of the PINs. The entirety of the study is only around 5 minutes, while mobile
authentication PINs are used for indefinite periods, and likely carried from one device to the next.
There are clear differences in these cases, and while we report on the recall rates within the context
of the study, these results do not generalize.

Finally, we limited the warning messaging used when a blocklist event occurred. We made this
choice based on evaluating the messaging as used by iOS, but there is a long line of research in
appropriate security messaging [2, 19, 23, 50]. We do not wish to make claims about the quality of
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Table 5. Guessing difficulty for a perfect knowledge attacker.

Online Guessing (Success %) Offline Guessing (bits)
Dataset Size λ3 λ10 λ30 H∞ ˜G0.05 ˜G0.1 ˜G0.2

First-4 851 3.41 % 6.23 % 11.75 % 5.65 7.07 7.81 -⋆

Amit-4† 204 432 9.28 % 15.28 % 22.91 % 4.52 4.82 5.20 6.68
Rock-4† 1 780 587 8.23 % 17.63 % 30.67 % 4.73 5.00 5.42 5.94

First-6† 854 5.05 % 7.99 % 13.04 % 4.73 5.88 7.43 -⋆

Rock-6† 2 758 490 13.04 % 15.51 % 19.27 % 3.10 3.10 3.10 7.41
†: For a fair comparison we downsampled the datasets to the size of First-4 (851 PINs).
⋆: We omit entries which are not sufficiently supported by the underlying data.

this messaging, and a limitation of this study (and an area of future work) is to understand how
messaging affects changing strategies and click-through rates.

5 PIN SELECTION ON SMARTPHONES
In the following section, we discuss the security of both 4- and 6-digit PINs. Unless otherwise
stated, our analyzed dataset consists of the PINs entered before any blocklist warning in Step (5) of
the study. These so-called “first choice” PINs (cf. Table 7) are unaffected by the blocklists.

5.1 Strength of 4- and 6-digit PINs
Entropy-Based Strength Metrics. We analyzed PINs in terms of their mathematical metrics for

guessing resistance based on entropy estimations. For this, we consider a perfect knowledge attacker
who always guesses correctly (in perfect order) as described by Bonneau et al. [12]. The advantage
of such an entropy estimation approach is that it always models a best-case attacker and does not
introduce bias from a specific guessing approach. Our results are given in Table 5.
We report the β-success-rate, which measures the expected guessing success for a throttled

adversary limited to β-guesses per account (e.g., λ3 = 3 guesses). Moreover, we provide the Min-
entropy H∞ as a lower bound estimate that solely relies on the frequency of the most common PIN
(1234, 123456). Finally, we present the partial guessing entropy (α-guesswork)Gα , which provides
an estimate for an unthrottled attacker trying to guess a fraction α of all PINs. In three cases, the
calculation of G̃0.2 is based on PINs occurring only once, due to the small size of the datasets. This
constraint would result in inaccurate guessing-entropy values which is why they are not reported.
For a fair comparison among the datasets which all differ in size, we downsampled all datasets

to the size of the smallest dataset First-4 (851 PINs). We repeated this process 500 times, removed
outliers using Tukey fences with k = 1.5. In Table 5 we report the median values. The low Min-
entropy of the Rock-6 dataset is due to the fact that the PIN 123456 is over-represented. It is 21×
more frequent than the second-most popular PIN. In contrast, the most common 4-digit PIN occurs
only 1.7× more often, leading to a higher H∞ value. Overall, the PINs we collected, specifically
primed for mobile authentication, have different (and stronger) strength estimations than PINs
derived from leaked text-based password datasets. This is true for both the 4- and 6-digit PINs,
which supports our motivation for conducting studies that collect PINs directly.

Guess Number-Driven Strength Estimates. Next, we estimate the security of the PINs in regard
to real-world guessing attacks. Our attacker guesses PINs in decreasing probability order based
on the Amit-4, Rock-4, and Rock-6 datasets. When two or more PINs share the same frequency,
i.e., it is not possible to directly determine a guessing order, we order those PINs using a Markov
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model [21]. We trained our model on the bi-grams (4-digit PINs) or tri-grams (6-digit PINs) of the
respective attacking datasets which simulates the attacker with the highest success rate for each
case without overfitting the problem.

An overview of our guessing analysis can be found in Figure 6. In the throttled scenario, depicted
in Figure 6(a), we find that guessing 4-digit PINs with the Amitay-4-digit dataset (△) is the most
effective attack. In contrast to the RockYou-4-digit dataset (▽) for which we extracted PINs from a
password leak, the Amitay dataset consists of actual PINs (cf. Section 3.2). The fact that guessing
PINs which the RockYou-4-digit dataset is less effective informs to use actual PIN data whenever
possible and simulate our attacker by utilizing the Amitay dataset to estimate of 4-digit PINs.
When comparing 4- (△) and 6-digit PINs (×), we see that guessing performance varies. For

10 guesses (the maximum allowed under iOS), we find 4.6 % of the 4-digit and 5.7 % of the 6-digit
PINs are guessed. For 30 guesses (a less determined attacker on Android), 7.6 % of the 4-digit and
8.8 % of the 6-digit PINs are guessed and for 100 guesses (a reasonable upper bound on Android),
16.2 % of the 4-digit and 12.5 % of the 6-digit PINs.

Somewhat counter-intuitive is the weaker security for 6-digit PINs for the first 40 guesses.
Upon investigation, the most-common 6-digit PINs are more narrowly distributed than their most-
common 4-digit counterparts. The most common 6-digit PINs consist of simple PINs, such as 123456
as defined in Table 12 in Appendix A.4, and repeating digits. In contrast, the most common 4-digit
PINs consist of simple PINs, patterns, dates, and repeating digits. As a result, the most common
6-digit PINs may actually be easier to guess and less diverse than the most common 4-digit PINs.
There could be many explanations for this counter-intuitive finding. One explanation may be

that users have more 4-digit PIN sequences to draw on in choosing a PIN, such as dates, but have
fewer natural 6-digit analogs, and thus revert to less diverse, more easily guessed choices. We will
present some evidence for this hypothesis in Section 5.2 where we analyze the selection strategies
of 6-digit PINs. Another explanation may be that users have a false sense of security that comes
with 6-digit PINs as they are “two digits more secure” than 4-digit PINs. Thus, users do not feel that
they need more complexity in their 6-digit PIN choices. Either way, future research is needed to
better understand this phenomenon, which has also been observed by Aviv et al. [7] in the context
of increasing the size (3x3 vs. 4x4) of Android graphical unlock patterns.
Finally, we compare guessing resistance with other mobile authentication schemes including

Android’s graphical unlock patterns drawn on a 3x3 grid (□) and alphanumeric passwords (⋆), along
with a uniform distribution of 3-digit PINs (–). In theory, a 3x3 grid allows 389 112 unique patterns,
yet, the distribution of patterns is highly skewed [52]. When considering an attack throttled to
100 guesses, 35.5 % of the patterns will be guessed. Against this attack, 4- and 6-digit PINs are twice
as good. Password-based authentication, on the other hand, is the most secure scheme. After 100
guesses only 1.9 % of the passwords are recovered.

Figure 6(b) shows the guessing time of an attacker due to rate limiting based on Table 1 for iOS
and Android. iOS has stricter rate limiting with a maximum of 10 guesses that can be completed in
1h 36m, at which point an attacker compromises 4.6 % of the 4-digit PINs and 5.7 % of the 6-digit
PINs. At the same time limit of roughly 1.5 h, an attacker on Android is able to compromise 13.6 %
of the 4-digit PINs and 11.0 % of the 6-digit PINs because of less restrictive rate limiting.

Especially on iOS, rate limiting becomes more aggressive after the initial guesses. For example,
the first 6 guesses on iOS can be done within a minute, while the first 8 guesses already take 21
minutes. An attacker with only one minute on iOS can compromise 3.5 % of the 4-digit PINs and
5.2 % of the 6-digit PINs. However, for 10 guesses which take 1h 36m on iOS, there are only marginal
gains with 4.6 % of the 4-digit PINs and 5.7 % of 6-digit PINs compromised. Hence, after the first
minute with 6 guesses on iOS, it does not greatly benefit the attacker to continue through the
aggressive timeouts for 4 more guesses at 1h 36m. In contrast, an attacker on Android would benefit
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as it outperforms Rock-4 (cf. Figure 6(a)).

Fig. 6. Guessing performance of a throttled attacker. The figure on the top is based on the number of guesses.
The bottom figure is based on the required time and considers the rate limits of Android and iOS (cf. Table 1).
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more from continuing to guess beyond the initial large increases in rate limiting. Note, in a targeted
attack, there may be additional information or other motivations for the attacker not modeled here.
To summarize, we confirmed previous work from Wang et al. [59] that there is no evidence

that 6-digit PINs offer any security advantage over 4-digit PINs considering a throttled guessing
attacker with up to 40 guesses, which covers most mobile unlock authentication settings. Only
when considering threat models where the attacker is allowed to guess more often, 6-digit PINs start
to exceed 4-digit PINs in terms of their guessing resistance. To support this claim, we performed
χ 2 tests (α = 0.05) for both the 4- and 6-digit PINs guessed within 10 [4.6 %, 5.7 %], 30 [7.6 %, 8.8 %],
and 100 guesses [16.2 %, 12.5 %]. The test for 10 (p = 0.28) and 30 guesses (p = 0.39) did not show a
significant difference in PIN strength. For 100 guesses, on the other hand, we were able to observe
that the 6-digit PINs are significantly stronger than the 4-digit ones (p = 0.03). This again highlights
the importance of clearly defining threat model in terms of how many guesses the attacker is able
to make when deciding on a certain PIN length.

Effect of Biometrics. Users who employ a biometric, cf. Table 4, do not need to provide their
knowledge-based authenticator as often as users who solely rely on a PIN, pattern, or password.
This may shift users towards more complex choices which are more cumbersome to type, but,
owing to the biometric, only need to be provided on rare occasion like a device restart. Hence, the
question arises: do users who authenticate with a biometric select more secure PINs?
To test this hypothesis, we split each the First-4 and First-6 dataset into two datasets, based on

whether participants stated to use a biometric or not. As we primed our participants to select a PIN
they would use to unlock their smartphone (cf. Figure 2), we have all the information required for
this type of analysis. The security metrics for the “Biometric-used” and “No-biometric-used” datasets
are shown in Table 7. The results do not support the hypothesis, but instead, participants who do
not use a biometric tend to create more secure PINs. However, while the success rates of the attacker
differ by up to 3 % for 30 guesses when comparing Biometric-used-4 and No-biometric-used-4, we
were not able to observe any significant differences using a χ 2 test (α = 0.05).

5.2 Selection Strategies
In Step (6) of our study, we asked participants about their “strategy for choosing” their PIN. We
analyzed the free-text responses to this question by building a codebook from a random sample of
314 PIN selection strategies using two coders. Inter-rater reliability between the coders measured
by Cohen’s kappa was κ = 0.90. Table 12 in Appendix A.4 shows the 10 most popular strategies.
While the selection strategies are diverse, most participants chose PINs that they perceive as

memorable in general or based them on dates, especially birthdays and anniversaries. Other popular
strategies are PIN pad patterns, choosing randomly, or selecting other kinds of meaningful numbers
to the participants, like a ZIP Code or a favorite number. While most of those strategies are common
across both PIN lengths, 26 of the 33 participants (79 %) who stated to choose digits randomly were
asked to create a 6-digit PIN. This again supports the intuition that users have less experience with
6-digit PINs and start to run out of meaningful strategies earlier.

To further understand how users create 6-digit PINs and to see if users take their 4-digit selection
strategy and just extend it to create a longer version, we now look at the 4-digit substrings of the
6-digit PINs. For this, we took the 855 First-Choice-6-digit PINs and created three lists extracting
the 4 leftmost, the 4 middle, and the 4 rightmost digits of each PIN. For comparison, we overlapped
those lists with the First-Choice-4-digit PINs. As can be seen in Table 6, the greatest overlap with
23 %, occurs for the leftmost substring PINs, followed by the rightmost (14 %). The substring PINs
consisting of the 4 digits in the middle only overlap with the First-4 PINs by 9%. Moreover, all
of the PINs we extracted for this list follow simple repetitions, strategies which are not specific
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Table 6. Overlap of the First-4 PINs with the three substring lists extracted from the First-6 PINs.

Overlap Top 5 PINs
Substring No. % PIN No. % Most Common Addition

Leftmost 196 23 %

1234 17 9 % 123456 (91 %)
2580 7 4 % not distinct
6969 5 3 % 696969 (80 %)
1212 4 2 % 121212 (50 %)
1379 3 2 % not distinct

Middle 74 9 %

0000 2 3 % 000000 (100 %)
1111 2 3 % 111111 (100 %)
2121 2 3 % 121212 (100 %)
7777 2 3 % 777777 (100 %)
9898 2 3 % 898989 (100 %)

Rightmost 116 14 %

6969 5 4 % 696969 (80 %)
4321 4 4 % 654321 (100 %)
1212 3 3 % 121212 (67 %)
4578 2 2 % 124578 (100 %)
7777 2 2 % 777777 (67 %)

for a certain PIN length. A similar conclusion can be drawn from the rightmost PINs, there is no
indication that participants started with a 4-digit PIN and added two digits on the left. Again, we see
that the creation strategies can be used to create PINs of arbitrary length, mostly repetitions (e.g.,
1212/121212), and sequences (e.g., 4321/654321). However, Table 6 also depicts two exceptions:
2580, and 1379. The former is a top-down walk, which allows for a simple 4-digit PIN, yet, each of
the 7 participants who started a 6-digit PIN this way ended up differently. A similar observation
can be made for 1379, where each of the four corners is selected without an apparent addition for
a 6-digit PIN. Both cases suggest that there are participants who did not have an actual 6-digit
strategy but used one they had in mind for 4-digits and added two digits. This also fits the overall
impression that users are more familiar with 4-digit PINs.

6 BLOCKLISTS AND PIN SELECTION
We now present results on our 10 blocklist treatments: 5 for each PIN length as shown in Table 7.

6.1 PIN Creation & Entry Times
The blocklist has an impact on the PIN creation time: increase in the number of blocklist messages
leads to increased creation time. The median creation time when receiving a blocklist message can
be found in Table 7; a more detailed breakdown for each treatment can be seen in Figure 7.

In the 4-digit case, there are obvious differences between the control treatments and the placebo
and the large data-driven treatment DD-4-2740. The median creation time increases from 7.9 s for
the Con-4 treatment to 21.8 s for Pla-4 and 25.4 s for DD-4-2740. Both differences are significant
(p < 0.001) using a Kruskal-Wallis test followed by a Bonferroni-corrected pair-wise Wilcoxon test.
The differences for the remaining 4-digit treatments iOS-4-wC, iOS-4-nC, and DD-4-27 are more
subtle. The median creation time for the small data-driven treatment DD-4-27 only increases by
0.9 s to 8.8 s, followed by the iOS-4-nC treatment (9.3 s), and iOS-4-wC (10.4 s). Moreover, we were
able to observe significant differences for the latter comparison, i.e., Con-4 vs. iOS-4-wC (p < 0.01),
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Table 7. Security metrics and usage times for PINs considering different datasets and treatments.

Blocklist 10 Guesses 30 Guesses 100 Guesses Guess No. Creation Entry Number of
Name Participants Hits No. % No. % No. % Median Time Time Attempts

D
at
as
et
s

First-Choice-4-digit 851 - 39 5 % 65 8 % 138 16 % 1 330 - - -
Clicked-through-4 19 19 5 26 % 6 32 % 13 68 % 50 - - -
Biometric-used-4 533 - 28 5 % 47 9 % 91 17% 1347 - - -
No-biometric-used-4 318 - 11 4 % 18 6 % 47 15% 1257 - - -

Control-4-digit 231 - 11 5 % 19 8 % 39 17% 1 185 7.9 s 1.5 s 1.01

T
re
at
m
en

ts

Placebo-4-digit 122 122 5 4 % 11 9 % 19 16 % 2 423 21.8 s 1.5 s 2.15
iOS-4-digit-wCt 124 28 5 4 % 8 6% 18 15 % 1 405 10.4 s 1.4 s 1.17
iOS-4-digit-nCt 126 21 4 3 % 10 8 % 14 11 % 1 747 9.3 s 1.6 s 1.29
DD-4-digit-27 121 5 4 3 % 7 6% 18 15 % 1 928 8.8 s 1.5 s 1.11
DD-4-digit-2740 127 88 0 0 % 0 0% 1 1% 2 871 25.4 s 1.6 s 2.98

D
at
as
et
s

First-Choice-6-digit 854 - 49 5 % 75 9 % 107 13 % 49 021 - - -
Clicked-through-6 10 10 9 90 % 9 90 % 9 90% 1 - - -
Biometric-used-6 542 - 33 6 % 51 9 % 68 13% 47 773 - - -
No-biometric-used-6 312 - 16 5 % 24 8 % 39 13% 50 922 - - -

T
re
at
m
en

ts

Control-6-digit 236 - 15 6 % 26 11 % 35 15% 42 584 11.0 s 2.5 s 1.01
Placebo-6-digit 117 117 3 3 % 6 5% 10 9% 154 521 28.5 s 3.0 s 2.17
iOS-6-digit-wCt 125 15 9 7 % 9 7% 13 10 % 40 972 11.9 s 2.6 s 1.06
iOS-6-digit-nCt 125 16 2 2 % 4 3% 6 5% 61 036 12.2 s 2.8 s 1.22
DD-6-digit-29 126 12 1 1 % 2 2% 7 6% 82 373 11.1 s 2.5 s 1.23
DD-6-digit-291000 125 90 0 0 % 0 0% 0 0% 324 621 45.2 s 3.5 s 3.94

0 60 120 180 240
DD-4-2740

DD-4-27

iOS-4-nC

iOS-4-wC

Pla-4

Con-4
| Median
⋄ Mean
⊢ Smallest value not smaller than 1.5 IQ range

⊣ Greatest value not greater than 1.5 IQ range

◦ Value greater than 1.5 times the IQ range

× Value greater than 3 times the IQ range

0 s 30 s 60 s 90 s 120 s 150 s 180 s 210 s 240 s 270 s

DD-6-291000

DD-6-29

iOS-6-nC

iOS-6-wC

Pla-6

Con-6

PIN Creation Time

Fig. 7. PIN creation times for the different treatments. For the sake of clarity, we excluded two extrema from
the plot: 1542.32 s from the DD-4-2740 treatment and 1105.13 s from DD-6-291000.
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whereas we were not for the comparisons of iOS-4-nC and DD-4-27 with the control treatment. We
did not observe any significant differences between the 4-digit treatments for entry time.
The situation is similar for 6-digit PINs. As can be seen in both in Table 7 and Figure 7, the

creation times for the Pla-6 and DD-6-291000 treatment increase compared to the control treatment,
but both iOS treatments (iOS-6-wC & iOS-6-nC) and the small data-driven treatment DD-6-29 show
minimal differences compared to control. We observed a significant differences for both Pla-6 and
DD-6-291000 (p < 0.001) using a Kruskal-Wallis test followed by Bonferroni-corrected pair-wise
Wilcoxon tests. We did not find significant differences between iOS-6-wC, iOS-6-nC, nor DD-6-29.

The entry times are again not affected with one exception: the 6-digit case. Participants required
more time to enter the PIN they created in the large data-driven treatment DD-6-291000. The
median here is 3.5 s compared to 2.5 s in the respective control treatment and this difference is also
significant (p < 0.001) using the same statistical tests.

This suggests that blocklists, when properly sized, can lead to significant increases in the creation
times which may in turn frustrated users, as we will explore n Section 6.6 and 6.7. However, the
subsequent usage of the PIN, as evidences by the entry time, is unaffected. Only in the case of a
very large blocklist with 6-digit PINs do we observe any meaningful increase in entry time.

6.2 Attacker’s Knowledge of Blocklists
As described in Section 3.1, we assume the attacker knows which blocklisting strategy is used by
the system and can optimize the guessing strategy by not guessing items on the blocklist. Here, we
consider how much benefit this optimization provides. Table 8 shows the net gains and losses for
guessing PINs when considering a blocklist-informed attacker.
Knowledge of the blocklist is unhelpful when considering the placebo (Pla-4 and Pla-6) and

the click-through treatments (iOS-4-wC and iOS-6-wC). The blocklist is effectively of size one
for the placebo as the first choice of a participant is dynamically blocked. Merely knowing that a
PIN was blocked is of little help to the attacker. As there is no clear gain (or harm), we model a
blocklist-knowledgeable attacker for the placebo treatments (see Table 7).
The case with a non-enforcing blocklist where users can click through the warning message

is more subtle. If the attacker is explicitly choosing not to consider PINs on the blocklist, even
though they may actually be selected due to non-enforcement, the guessing strategy is harmed
(negative in Table 8). None of the tested modifications of this strategy, e.g. by incorporating the
observed click-through rate, lead to an improvement. As such, we consider an attacker that does
not use the blocklist to change the guessing strategy for the click-through treatments (iOS-4-wC
and iOS-6-wC). In the remaining treatments (iOS-4-nC, DD-4-27, DD-4-2740, iOS-6-nC, DD-6-29,
DD-6-291000), there are clear advantages when knowing the blocklist.

6.3 Blocklisting Impact on Security
We now consider how the different blocklists perform in terms of improving security. The primary
results are in Table 7 where we report on the guessing performance against each treatment. As
described in Section 3.1, there are certain rate limits implemented on Android and iOS which is why
we report on throttled attacks with 10, 30, and 100 guesses in terms of the number and percentage
of correctly guessed PINs (No. and % columns). Furthermore, we provide the attacker’s performance
in an unthrottled setting based on the median guess number. The 4-digit attacker is informed by
the Amit-4 dataset, while the 6-digit attacker employs the Rock-6 dataset. Both attackers guess in
frequency order with knowledge of the blocklist where appropriate (see Section 6.2). Finally, Figure 8
shows the selection bias for the first digit of the PIN. Multiple treatments are visualized to show the
effects of different blocklists (sampled down to 117 PINs for a fair comparison). Unfortunately, a
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Table 8. Attacker’s gain from blocklist knowledge.

10 Guesses 30 Guesses 100 Guesses Guess No. Knowledge
Treatment No. % No. % No. % Median Beneficial

Pla-4 ±0 ±0 % ±0 ±0 % ±0 ±0 % ±0 –
iOS-4-wC -3 -2 % -4 -2 % -9 -8 % -303 ✗

iOS-4-nC +3 +2% +7 +6% +3 +2% +245 ✓

DD-4-27 +4 +3% +7 +6% +5 +4% +27 ✓

DD-4-2740 ±0 ±0% ±0 ±0% +1 +1% +2740 ✓

Pla-6 ±0 ±0 % ±0 ±0 % ±0 ±0 % ±0 –
iOS-6-wC -9 -7 % -5 -4 % -8 -6 % -7322 ✗

iOS-6-nC +2 +2% +2 +2% +2 +2% +1524 ✓

DD-6-29 +1 +1% +2 +2% +2 +2% +29 ✓

DD-6-291000 ±0 ±0% ±0 ±0% ±0 ±0% +291000 ✓

heatmap does not provide a direct security metric and does not necessarily correlate with guessing
difficulty, but this visualization suggest that PIN selection bias shifts when encountering a blocklist.

To analyze the security, we performed a multivariant χ 2 test comparison (α = 0.05) for the PINs
guessed within 10, 30, and 100 guesses across treatments. The test for 10 suggested some significant
differences in the data (p = 0.007), however, we did not find any actual significant differences in
the post-hoc analysis (Bonferroni-corrected). For 30 guesses and 100 guesses the test also showed
significant differences (p < 0.001); the results of the post-hoc analyses are described below.

Smaller Blocklists. When looking at the 4-digit treatments, there is little difference among Placebo-
4-digit, iOS-4-digit-wCt, iOS-4-digit-nCt, and DD-4-digit-27, compared to Control-4-digit or First-
Choice-4-digit. In our post-hoc analyses (Bonferroni-corrected), we found no significant difference.
The same holds when comparing the selection bias in the Control-4-digit treatment (Figure 8(a))
and the iOS-4-digit-wCt blocklist treatments (274 PINs, Figure 8(b)): there is a strong preference for
selecting 1, but also 2 and 0 are common, as the first digit of the PIN. All other digits are selected
similarly often. It remains unclear, whether this preference is owed to the digits or their position
on the PIN pad (top, left). A common selection bias is also observed in graphical passwords [20, 22,
35, 52].

For our 6-digit treatments, the situation is similar, yet, there is one exception: for 30 guesses we
observed a significant difference between the small data-driven blocklist and the control (p < 0.01).
While this implies that it can make sense to employ a small blocklist in certain cases, we will show
in Section 6.7 that blocklist warnings are associated with negative sentiments. Additionally, the
selection bias in the control treatment and the small blocklists are comparable, as can be seen in
Figure 8(e) and (f). Hence, it is hard to justify the combination of throttling and blocklists in general.

In the unthrottled setting, we see differences between the smaller and placebo blocklists. Notably,
the smallest (DD-4-digit-27, DD-6-digit-29) outperforms the larger iOS blocklists (iOS-4-digit-nCt,
iOS-6-digit-nCt). We conjecture this may be due to iOS’ inclusion of PINs based on repetitions
which were chosen less often by our participants. As a result, in an unthrottled setting, blocklisting
can offer real benefits. The median guess numbers for both 4- and 6-digit placebos suggest that
just pushing users away from their first choice can improve security. Unfortunately, direct use of
a placebo blocklist is unlikely to be effective and is problematic in practice as users will quickly
figure out the deception.
Finally, these improvements to the unthrottled attack setting appear to be only of academic

interest: given the small key space, any attacker that is able to bypass the enforced rate limiting is
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4-digit PINs

(a) Control-4-digit (b) iOS-4-digit-wCt (c) Opt-4-digit-1000 (d) DD-4-digit-2740

6-digit PINs

(e) Control-6-digit (f) iOS-6-digit-wCt (g) Opt-6-digit-2000 (h) DD-6-digit-291000

Fig. 8. Heatmaps showing the selection bias for the first digit when composing a PIN.

able to exhaustively test all possible combinations [44]. For example, a tool from Elcomsoft is able
to bypass the rate limiting on Apple’s iPhone 5 and 5c. In this case, guessing all 4-digit PINs takes
about 12 minutes while enumerating all 6-digit PINs takes 20.5 hours [1].

Large Blocklist. We also consider very large blocklists in the DD-4-digit-2740 and DD-6-digit-
291000 treatment containing 2740 PINs and 291 000 PINs respectively. These blocklists are bigger
than their iOS counterparts, blocking 27.4 % in the 4- and 29.1 % of the key space in the 6-digit case.
At this scale, we do see noticeable effects on the security in the throttled setting. In the 4-digit case,
the attacker finds only 1 % of 4-digit PINs after 100 guesses. Our χ 2 tests support this, for 100 guesses
we found a significant difference (p < 0.001). For post-hoc analyses (Bonferroni-corrected) we
found significant differences between the large DD-4-2740 blocklist and Con-6 (p < 0.01) as well as
the treatments: Con-4 (p < 0.001), Pla-4 (p < 0.01), iOS-4-wC (p < 0.05), and DD-4-27 (p < 0.05).
As expected, the selection bias of the first digit also becomes less pronounced (cf. Figure 8(d)).

In the 6-digit case, we make similar observations for the guessing routine although we already
start to see significant differences for 30 guesses when comparing the DD-6-291000 and the control
treatment (p < 0.01). For 100 guesses the guessing success of the attacker in the DD-6-291000
treatment is significantly lower than for all 4-digit treatments: Con-4 (p < 0.001), Pla-4 (p < 0.01),
iOS-4-wC (p < 0.05), DD-4-27 (p < 0.01), as well as the 6-digit control treatment (p < 0.001). Again,
participants also choose their first digit more equally distributed as can be seen in Figure 8(h). All
of this suggests that a larger blocklist can improve security in a throttled setting.
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While similar positive security results are present for the unthrottled setting, we show in
Section 6.6 that the larger blocklist also leads to a perceived lower usability, and thus it is important
to balance the user experience with security gains.

Correctly Sizing a Blocklist. While there is a clear benefit to having a large blocklist, it is important
to consider the right size of a blocklist to counteract negative usability and user experience issues.
Data from the large data-driven treatments enable us to simulate how users would have responded
to shorter blocklists. In our user study, we collected not only the final PIN accepted by the system,
but also all n − 1 intermediate (first-choice, second-choice, and so on) PINs rejected due to the
blocklist. Consider a smaller blocklist that would have permitted choice n − 1 to be the final PIN,
rather than n. To simulate that smaller blocklist size, we use choice n − 1.
The results of the simulation are shown in Figure 9. We observe that there are several troughs

and peaks in the curves in both figures. We speculate that these relate to changes in user choices as
they move from their first choice PIN to their second choice PIN, and so on due to the expanding
blocklist restrictions. For example, entering the first trough, the attacker is most disadvantaged
when it is no longer possible to rely on guessing only first choice PINs and second choice PINs
need to be considered. Eventually, the blocklist has restricted all first choice PINs, whereby the
attacker can now take advantage of guessing popular second choices which results in a peak. These
cycles continue until the blocklist gets so large that few acceptable PINs remain, and the attacker’s
advantage grows steadily by guessing the remaining PINs not on the blocklist.
Based on these cycles, we conclude that an appropriately-sized blocklist should be based on

one of the troughs where an attacker is most disadvantaged to maximize the security gained in
the throttled setting. As we are also concerned about minimizing user discomfort and frustration
(e.g, PIN creation time, see Section 6.1), the first trough appears the most ideal. As can be seen
in Figure 9(a), for 4-digit PINs the first trough occurs at about 1000 PINs (10 % of the 4-digit PIN
space) throttled at 100 guesses. A similar suggestion can be drawn from the simulation for 6-digit
PINs in Figure 9(b), however, due to the overall larger key space, a blocklist with 2000 PINs only
corresponds to 0.2 % of all possible selections. In Figure 8, we refer to these two recommended
blocklists as Opt-4-digit-1000 and Opt-6-digit-2000, respectively. For 4-digit PINs, the distribution
shown in Figure 8(c) is more equally distributed across all digits. When comparing the selection
bias for the optimal 6-digit blocklist to the control treatment in Figure 8(g), the bias towards starting
a PIN with 1 is less pronounced. Other digits, like 3 and 4, become more popular. We do not observe
equally aligned distribution, but the attackers success rate is sufficiently low when blocking only
0.2 % of the keyspace. In contrast, the ideal 4-digit blocklist rejects 10 % of all possible PINs.

6.4 Enforcing the Blocklist
To test the effect of a click-through option, we compared the enforcing treatment for each length
(iOS-4-nC / iOS-6-nC) with its non-enforcing counterpart (iOS-4-wC / iOS-6-wC). In neither of
the two comparisons, we observed significant differences. This suggests that using a click-through
option does not reduce security in the throttled attacker setting despite the fact that clicked-through
PINs are extremely weak (see row Clicked-through-4 in Table 7). These results seem to be driven by
the fact that it is uncertain whether the user clicked through (see Table 8). In an enforcing setting,
the attacker can leverage the blocklist but is equally challenged in guessing the remaining PINs.
We also investigated why participants chose to ignore and click through the warning. From 28

participants who saw a blocklist warning in the iOS-4-wC treatment, we observed a click-through-
rate of 68 % (19 participants). In the respective 6-digit treatment iOS-6-wC, 10 out of 15, i.e., 67 %,
ignored the warning. This is twice the rate at which TLS warnings are ignored (∼ 30%) [49].
Furthermore, we asked the 29 participants who pressed “Use Anyway” about their motivations. The

ACM Trans. Priv. Sec., Vol. 24, No. 4, Article 30. Publication date: September 2021.



30:24 Markert et al.

0
25

0
50

0
75

0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
40

Blocklist Size

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
P

e
rc

e
n
ta

g
e
 G

u
e
s
s
e
d

DD-4-digit-2740 - Amitay-4-digit 1000 Guesses

DD-4-digit-2740 - Amitay-4-digit   500 Guesses

DD-4-digit-2740 - Amitay-4-digit   250 Guesses

DD-4-digit-2740 - Amitay-4-digit   100 Guesses

DD-4-digit-2740 - Amitay-4-digit     50 Guesses

DD-4-digit-2740 - Amitay-4-digit     10 Guesses

(a) For throttled attackers, limited to 100 guesses, a blocklist of ∼10% of the key space
(∼1000 PINs) is ideal.
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Fig. 9. Blocklist size recommendations for 4- (upper figure) and 6-digit PINs (lower figure).
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Table 9. Changes of participants’ PIN selection strategies across treatments.

Selection vs. Changing Strategy Edit Distance
Treatment Hits Sample Same Minor New Mean SD

Pla-4 122 29 35 % 24% 41% 3.20 0.90
iOS-4-wC 9⋆ 9 0 % 44% 56% 3.11 0.87
iOS-4-nC 21 21 19 % 29% 52% 3.24 0.92
DD-4-27 5 5 40 % 40% 20% 3.20 0.75
DD-4-2740 88 29 14 % 24% 62% 3.39 0.76

Pla-6 117 28 28 % 18% 54% 4.59 1.41
iOS-6-wC 5⋆ 5 0 % 40% 60% 4.40 1.20
iOS-6-nC 16 16 6 % 50% 44% 4.00 1.54
DD-6-29 12 12 33 % 33% 33% 5.25 0.72
DD-6-291000 90 29 14 % 21% 65% 4.82 1.13
⋆: Hit blocklist, and did not click-through.

3 most observed answers are Memorability Issues: “Because this is the number I can remember,”
Incomplete Threat Models: “Many people don’t tend to try the obvious PIN as they think it’s too
obvious so people won’t use it,” and Indifference: “I don’t give [sic] about the warning. Security is
overrated.” These findings are similar to prior work where users do not follow external guidance
for a number of reasons [45, 62]. In older versions of iOS, the blocklist warning message was “Are
You Sure You Want to Use This PIN? This PIN is commonly used and can be easily guessed.” with the
safe option “Choose New PIN ” in bold and the unsafe click-through option saying “Use PIN.” We
observed that Apple changed this wording with iOS 11 to what is depicted in Figure 4. Considering
that TLS warning design research started with similarly high click-through-rates of around 70 % [2],
we hope that new designs can also improve blocklist warning CTRs [49].

6.5 PIN Changing Strategies
In our study, we asked 485 participants who faced a blocklist how their creation strategy changed
in response to the warning. We sampled 183 responses (∼ 10 % of our total number of participants)
and grouped them into three categories: participants who continued using the “Same” strategy,
participants who made “Minor” changes to the strategy, and participants who came up with a
completely “New” strategy. Examples for those cases can be found in the Appendix A.4 in Table 13.
Two coders independently coded the data. Inter-rater reliability between the coders measured by
Cohen’s kappa was κ = 0.92. The detailed results for each treatments are shown in Table 9.

About 50 % of the participants choose a new strategy when confronted with a blocklist warning.
Only participants of the DD-4-27 and DD-6-29 treatment with a very small blocklist, tended to
keep their pre-warning strategy. The edit distances vary slightly across the treatments and support
this self-reported behavior: participants in the 4-digit scenario changed on average 3 digits with
the standard deviation showing that some participants changed their PIN completely while some
participants only changed 2 digits. The same conclusion can be drawn from the edit distances in
the 6-digit case with one difference: participants in the DD-6-29 treatment changed more digits on
average. This is particularly interesting because the blocklist is by far the smallest which suggests
that users may be more willing to change their PIN if the warning does not appear to be arbitrary.

To analyze how participants changed their PIN selection, we mapped the initial selection strate-
gies to the final ones. The result is shown in Figure 10. First of all, 25 % of the participants stated to
have changed their PIN into something random (cf. Table 12 in Appendix A.4). While there are 7 %
of the participants who already had this strategy, we observe a shift from all of the other selection
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Fig. 10. Participants’ PIN selection (first choice) and changing strategies (final choice) for n = 183.

strategies to a random PIN which shows the effectiveness of the blocklist warnings. Moreover,
we see that participants usually do not change their PIN to be “memorable,” a “date,” or “simple.”
Furthermore, we also see that a certain number of participants stick to their strategy. While we
already described that this decision is influenced by the treatment (cf. Table 9), we are now able to
see that the selection strategy also influences this decision. For example, nearly all participants
who initially selected a random PIN, held on to this approach. This is less distinct across other
strategies, yet, participants who stuck to their selection strategy are always the largest group. The
only two exceptions are participants who reused a PIN or selected it based on a pattern, they tended
to change their strategy after seeing a blocklist warning.

6.6 User Perception
We analyzed participants’ perceptions regarding PIN selections with respect to security and usabil-
ity. Participants were asked to complete the phrase “I feel the PIN I chose is” with three different
adjectives: “secure, memorable, and convenient.” The phrases were displayed randomly and partici-
pants responded using a Likert scale. The results are shown in Figure 11. To compare these results,
we converted the Likert responses into weighted averages on a scale of -2 to +2. As the weighted
averages are not normally distributed, tested using the Shapiro-Wilk test (p < 0.001), we tested
for initial differences using a Kruskal-Wallis test, followed with post-hoc, pair-wise tests using
Dunn’s-test comparisons of independent samples with a Bonferroni correction.
We found that there are significant differences across treatments when considering Likert

responses for security. For the 4-digit PINs, post-hoc analysis did not indicate any significant
differences. One explanation for this overall high confidence in the security of the PIN choice, may
be the familiarity with 4-digit PINs. In contrast to this, participants in the DD-6-291000 treatment
perceive their PINs as more secure compared to participants of the 6-digit control (p < 0.05), and
iOS-6-wC treatment (p < 0.01). Here, the large portion (72 %) of participants who encountered the
blocklist may have lead to a change in the overall perception.

Formemorabilitywe also found significant differences among the treatments. In post-hoc analysis
we found that increased interaction with the blocklist led to lower perceived memorability of PINs,
as evidenced by the Pla-4 (p < 0.001), DD-4-2740 (p < 0.05), Pla-6 (p < 0.001), and DD-6-291000
(p < 0.001) treatments compared to their respective control treatments. The DD-4-2740 and DD-6-
291000 showed the most significant differences with other treatments. Again, this is likely due to
the fact that many participants encountered a blocklist warning sometimes even for multiple PIN
choices and were thus relying on not just second-choice PINs, but also third- and fourth-choice,
etc. PINs that are perceived to be less memorable.
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Treatment Security Memorability Convenience

Con-4 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Pla-4 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-4-wC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-4-27 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-4-2740 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Con-6 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-6-wC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-6-29 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

DD-6-291000
0 20 40 60 80 100

Secure Somew.
secure

Neither Somew.
insecure

Insecure

0 20 40 60 80 100

Easy
to rmb.

Somew.
easy

Neither Somew.
hard

Difficult
to rmb.

0 20 40 60 80 100

Easy to
enter

Somew.
easy

Neither Somew.
hard

Difficult
to enter

Fig. 11. Participants’ perception of their PIN’s security (Secure – Insecure), memorability (Easy to remember –
Difficult to remember), and convenience (Easy to enter – Difficult to enter).

The responses to perceived convenience also show significant differences, however, post-hoc
analysis revealed limited effects when considering pair-wise comparisons. In general, participants
perceived their 4-digit or 6-digit PINs at the same convenience level across treatments. However,
there is one exception: PINs created in the DD-6-291000 treatment are perceived as significantly
more difficult to enter than PINs in the 6-digit control treatment (p < 0.01), iOS-6-wC (p < 0.05),
DD-6-29 (p < 0.05), and all 4-digit treatments (p < 0.001). As for the memorability, this suggests that
while users may be comfortable with their first-choice 6-digit PIN, there is much higher perceived
inconvenience when having to conform with a large blocklist.

6.7 User Sentiment
To gain insight into participants’ sentiments regarding blocklisting, we asked “Please describe
three general feelings or reactions that you had after you received this warning message” or “would
have had” if the participant did not encounter a blocklist. Accompanying the prompt are three
free-form, short text fields. A codebook was constructed by two individual coders summarized in
Appendix A.5 in Table 14. For each of the four categories (blocklist hit experienced vs. imagined, 4-
vs. 6-digit PINs, non-enforcing vs. enforcing, different blocklist sizes), 21 individuals’ responses
were randomly selected. Again, two individual raters were tasked with coding the responses. The
inter-rater reliability, computed using Cohen’s kappa, was κ = 0.98.

Using the NRC Word-Emotion Association Lexicon [38], we classified assigned codes in terms of
sentiment (positive, negative, or neutral) for Figure 12. EmoLex maps individual English words (in
this case, codes assigned by our coders) to exactly one sentiment. For example, “indifference,” is
labeled with the “negative” sentiment. As expected, participants generally had a negative reaction
to the blocklist warning message.
While overall, participants expressed negative sentiments towards blocklist messages, which

may be expected as warning messages are not often well received by users [2], we only observed
significant differences in a single comparison. Using a χ 2 test, we found that there was significant
difference (p < 0.05) in the proportion of negative sentiment when considering PIN length for the
two placebo treatments. As both groups always experienced a blocklist event, a higher negative
sentiment exists for the placebo blocklist with 4-digits. This might be because users were confused
and angered by the warning as the blocklist event was arbitrary. However, in the 6-digit PIN case,
less familiarity with 6-digit PINs may have led to less negative reactions.
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Group Sentiment
Experienced vs. Imagined Blocklist

Experienced 0 20 40 60 80 100

Imagined 0 20 40 60 80 100

PIN Length
Pla-4 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100

Non-Enforcing vs. Enforcing
iOS-4-wC 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100

iOS-6-wC 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100

Blocklist Size
Pla-4 0 20 40 60 80 100

iOS-4-nC 0 20 40 60 80 100

DD-4-2740 0 20 40 60 80 100

Pla-6 0 20 40 60 80 100

iOS-6-nC 0 20 40 60 80 100

DD-6-291000
0 20 40 60 80 100

Negative Neutral Positive

Fig. 12. Participants’ sentiment: We split the participants into four categories and classified their feelings in
terms of sentiment using EmoLex [38].

Interestingly, participants in general consider displaying warnings about weak PIN choices to
be appropriate although they cannot imagine that their own choice might be considered insecure.
Moreover, sentiments are similar for those who hit the blocklist and those who imagined having
done so. This suggests that future research on blocklist warning design may benefit from simply
asking participants to imagine such events.

7 CONCLUSION AND RECOMMENDATIONS
This paper presents the first comprehensive study of PIN security as primed for the smartphone un-
lock setting. In the smartphone unlock setting, developers have adopted notable countermeasures—
throttling, blocklisting, PIN length—which we consider as part of our analysis. Using a throttled
attacker model, we find that 6-digit PINs offer little to no advantage, and sometimes make matters
worse. Also, we find that blocklists in use on today’s mobile operating systems are not designed
reasonably. In some cases, they need to be larger in order to affect security at all, while they are
oversized in other cases, needlessly impairing the user experience.

Given this information, we offer a number of recommendations to mobile developers.
• In a throttled scenario, simply increasing the PIN length is of little benefit. In our results,
were only able to observe a significant difference between 4- and 6-digit PINs for an attacker
that performs at least 100 guesses. As this exceeds most attacking scenarios for mobile
authentication, developers should carefully articulate an alternative threat model to justify
the adoption of longer PINs. Observe that without throttling, an attacker could quickly try
all 4- and 6-digit PINs.
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• On iOS, with only 10 possible guesses, we could not observe any security benefits when a
blocklist is deployed, either for 4- or 6-digit PINs. On Android, where 100 guesses are feasible,
we find that a blocklist would be beneficial. Such a blocklist would need to contain the 1000
most popular PINs in the 4-digit case or the 2000 most popular for 6-digit PINs, in order to
increase the security of the chosen PINs while minimizing user frustration.

• We observe that the increase in terms of the perceived security is only significant when
users are forced to conform with a large 6-digit blocklist as compared to selecting a PIN in
presence of a large 4-digit blocklist (as was the case in the data-driven treatments). This may
suggest users are less familiar with selecting 6-digit PINs, an observation our analysis of
the selection strategies supports. Yet, a detailed exploration of the reasons for this are left to
future investigation.

• While we observed advantages for using a placebo blocklist in the unthrottled settings, we
do not recommend implementing a placebo blocklist, as users will simply game it once the
deception is known.
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A APPENDIX
A.1 Survey Instrument

Questions for participants who hit the blocklist.

We noticed that you received the following warning while choosing your PIN:

[A screenshot of the same warning message that the participant saw during the study.]

People use different strategies for choosing their PINs. Below, we will ask about your strategy.

(1) Prior to seeing the warning above, what was your strategy for choosing your PIN?
Answer:

(2) After receiving the warning message, please describe how or if your strategy changed when choosing your PIN.
Answer:

The “Extra” question was only asked if the participant had the option to ignore the warning and did so by clicking “Use
Anyway.”

(Extra) You selected “Use Anyway” when choosing your final PIN. Please describe why you did not change your final PIN
after seeing this warning message.
Answer:

(3) Please describe three general feelings or reactions that you had after you received this warning message.
Feeling 1: Feeling 2: Feeling 3:

Please select the answer choice that most closely matches how you feel about the following statements:

(4) My initial PIN creation strategy caused the display of this warning.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree

Questions for participants who did not hit the blocklist.

People use different strategies for choosing their PINs. Below, we will ask about your strategy.

(1) What was your strategy for choosing your PIN?
Answer:

Imagine you received the following warning message after choosing your PIN:

[A screenshot of the warning message as in Figure 4 or Figure 5.]

(2) Please describe how or if your strategy would change as a result of the message.
Answer:

(3) Please describe three general feelings or reactions that you would have had after you received this warning message.
Feeling 1: Feeling 2: Feeling 3:

Please select the answer choice that most closely matches how you feel about the following statements:

(4) My PIN creation strategy would cause this warning message to appear.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree

From now on all participants saw the same questions.

(5) It is appropriate for smartphones to display warning messages about PIN security.
◦ Strongly agree ◦ Agree ◦ Neutral ◦ Disagree ◦ Strongly Disagree
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Please select the answer choice that most closely matches how you feel about the following statements referring to the final
PIN you chose:

The order of questions 6, 7, and 9 was chosen randomly for each participant. The attention check question was
always the 8th question.

(6) I feel the PIN I chose is:
◦ Secure ◦ Somewhat secure ◦ Neither secure nor insecure ◦ Somewhat insecure ◦ Insecure

(7) I feel the PIN I chose is:
◦ Easy to remember ◦ Somewhat easy to remember ◦ Neither easy nor hard to remember ◦ Somewhat hard to
remember ◦ Difficult to remember

(8) What is the shape of a red ball?
◦ Red ◦ Blue ◦ Square ◦ Round

(9) I feel the PIN I chose is:
◦ Easy to enter ◦ Somewhat easy to enter ◦ Neither easy nor hard to enter ◦ Somewhat hard to enter ◦ Difficult to
enter

(10) What is your age range?
◦ 18-24 ◦ 25-34 ◦ 35-44 ◦ 45-54 ◦ 55-64 ◦ 65-74 ◦ 75 or older ◦ Prefer not to say

(11) With what gender do you identify?
◦Male ◦ Female ◦ Non-Binary ◦ Other ◦ Prefer not to say

(12) What is the highest degree or level of school you have completed?
◦ Some high school ◦ High school ◦ Some college ◦ Trade, technical, or vocational training ◦ Associate’s Degree
◦ Bachelor’s Degree ◦ Master’s Degree ◦ Professional Degree ◦ Doctorate ◦ Prefer not to say

(13) Do you use any of the following biometrics to unlock your primary smartphone? (Select all that apply)
□ Fingerprint □ Face □ Iris □ Other biometric □ I do not use a biometric □ I do not use a smartphone □ Prefer not to
say

If the participant stated they use a biometric in question 13:
14A) How do you unlock your smartphone, if your biometric fails or when you reboot your primary smartphone?

◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric password
◦ I use an unlock method not listed here ◦ I do not use a smartphone ◦ Prefer not to say

If the participant stated they do not use a biometric in question 13:
14B) What screen lock do you use to unlock your primary smartphone?

◦ None ◦ Pattern ◦ 4-digit PIN ◦ 6-digit PIN ◦ PIN of other length ◦ Alphanumeric password ◦ I use an unlock
method not listed here ◦ I do not use a smartphone ◦ Prefer not to say

(15) What is the operating system of your primary smartphone?
◦ Android ◦ iOS (iPhone) ◦ Other ◦ I do not use a smartphone ◦ Prefer not to say

(16) Which of the following best describes your educational background or job field?
◦ I have an education in, or work in, the field of computer science, computer engineering or IT.
◦ I do not have an education in, nor do I work in, the field of computer science, computer engineering or IT.
◦ Prefer not to say to say

(17) Please indicate if you have honestly participated in this survey and followed instructions completely. You will not
be penalized/rejected for indicating ’No’ but your data may not be included in the analysis:
◦ Yes ◦ No

(18) Please feel free to provide any final feedback you may have in the field below.
Answer:
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A.2 Demographics
Table 10. Overall demographics of the participants. For the sake of clarity, we grouped answers for Non-Binary,
Other, and Prefer not to say under Other.

Male Female Other Total

No. % No. % No. % No. %

What is your age range? 923 54 % 768 45 % 14 1 % 1705 100 %

18–24 125 7 % 87 5% 5 0% 217 13 %
25–34 461 27 % 350 21 % 5 0% 816 48 %
35–44 231 14 % 195 11 % 2 0% 428 25 %
45–54 72 4 % 84 5% 0 0% 156 9 %
55–64 24 1 % 47 3% 0 0% 71 4%
65–74 10 1 % 5 0% 0 0% 15 1%

Prefer not to say 0 0 % 0 0% 2 0% 2 0%

What is the highest degree or level of school you have completed? 923 54 % 768 45 % 14 1 % 1705 100 %

Some High School 3 0 % 4 0% 0 0% 7 0%
High School 95 6 % 66 4% 3 0% 164 10 %

Some College 208 12 % 142 9% 5 0% 355 21 %
Training 33 2 % 28 2% 0 0% 61 4%

Associates 85 5 % 104 6% 2 0% 191 11 %
Bachelor’s 389 23 % 321 19 % 2 0% 712 42 %
Master’s 82 5 % 86 5% 0 0% 168 10 %

Professional 13 1 % 8 0% 0 0% 21 1%
Doctorate 14 1 % 9 0% 0 0% 23 1%

Prefer not to say 1 0 % 0 0% 2 0% 3 0%

Which of the following best describes your educational background or job field? 923 54 % 768 45 % 14 1 % 1705 100 %

Tech 360 21 % 109 7% 3 0% 472 28 %
No Tech 534 31 % 638 37 % 8 0% 1180 69 %

Prefer not to say 29 2 % 21 1% 3 0% 53 3%

A.3 Device Usage
Table 11. Answers of participants regarding their device usage. Note, for the biometrics question, participants
selected all that apply. For the sake of clarity, we grouped answers for Non-Binary, Other, and Prefer not to
say under Other.

Male Female Other Total

No. % No. % No. % No. %

Do you use any of the following biometrics to unlock your primary smartphone? 923 54 % 768 45 % 14 1 % 1705 100 %

Fingerprint 504 30 % 395 23 % 7 0% 906 53 %
Face 161 9 % 102 6% 0 0% 263 15 %
Iris 41 3 % 17 1% 0 0% 58 4%

Other Biometric 19 1 % 26 2% 0 0% 45 3%
No Biometric 299 18 % 266 16 % 5 0% 570 34 %

No Smartphone 2 0 % 0 0% 0 0% 2 0%
Prefer not to say 28 2 % 28 2% 2 0% 58 4%

How do you unlock your smartphone, if your biometric fails or when you reboot your primary smartphone? 594 55 % 474 44 % 7 1% 1075 100 %

None 2 0 % 5 0% 0 0% 7 1%
Pattern 93 9 % 55 5% 0 0% 148 14 %

4-digit PIN 262 24 % 245 23 % 3 0% 510 47 %
6-digit PIN 177 16 % 141 14 % 4 0% 322 30 %

PIN of other length 20 2 % 12 1% 0 0% 32 3%
Alphanumeric 30 3 % 12 1% 0 0% 42 4%
Other method 6 1 % 2 0% 0 0% 8 1%

No smartphone 1 0 % 0 0% 0 0% 1 0%
Prefer not to say 3 0 % 2 0% 0 0% 5 0%

What screen lock do you use to unlock your primary smartphone? 329 52 % 294 47 % 7 1% 630 100 %

None 85 13 % 104 17 % 0 0% 189 30 %
Pattern 54 8 % 32 5% 2 0% 88 13 %

4-digit PIN 115 18 % 101 16 % 2 0% 218 36 %
6-digit PIN 32 4 % 27 4% 0 0% 59 8%

PIN of other length 8 1 % 3 0% 0 0% 11 2%
Alphanumeric 8 1 % 7 1% 0 0% 15 3%
Other method 10 2 % 4 1% 0 0% 14 2%

No smartphone 0 0 % 1 0% 0 0% 1 0%
Prefer not to say 17 3 % 15 2% 3 0% 35 6%

What is the operating system of your primary smartphone? 923 54 % 768 45 % 14 1 % 1705 100 %

Android 592 35 % 408 24 % 8 0% 1008 59 %
iOS 323 19 % 349 21 % 4 0% 676 40 %

Other 2 0 % 4 0% 0 0% 6 0%
No smartphone 0 0 % 0 0% 0 0% 0 0%
Prefer not to say 6 0 % 7 0% 2 0% 15 1%
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A.4 PIN Selection and Changing Strategies
Table 12. We coded and analyzed a sample of 314 PIN selection strategies. Below, we list the top 10 selection
strategies. Two coders independently coded the data. The level of agreement among the coders, measured by
Cohen’s kappa, was κ = 0.90. Question: “People use different strategies for choosing their PINs. Below, we will
ask about your strategy. What was your strategy for choosing your PIN?”

Code Name Frequency Description Example PIN Sample from the Study

Memorable 77 Memorability was the main concern 2827 / 777888 “A number easy to remember.”
Date 65 Special date like anniversary, birthday, graduation day 1987 / 112518 “A date I won’t forget.”

Pattern 37 Visualized a pattern on the PIN pad 2580 / 137955 “The numbers on how they appeared on the PIN pad.”
Random 33 Randomly chosen digits 4619 / 568421 “Random numbers that do not repeat.”
Meaning 27 Personal meaning; Familiar or significant number 6767 / 769339 “I chose my favorite numbers and used them repeatedly.”

Reuse 18 Reused PIN from a different device/service 0596 / 260771 “The one I normally use.”
Simple 16 Simplistic, comfortable, easy 0000 / 123987 “To just chose an easy PIN.”
Word 12 Textonyms; Converted a word to a number 2539 / 567326 “Dog name.”

System 10 User’s established systematic strategy 0433 / 041512 “I used the numbers from the current time 04:33 PM.”
Phone 7 (Partial) phone number 1601 / 407437 “I used the first four digits of a friend’s phone number.”

Table 13. We coded and analyzed a sample of 183 PIN changing strategies of participants that encountered a
blocklist and in response changed their PIN. Below we list and explain our codes. Two coders independently
coded the data. The level of agreement among the coders, measured by Cohen’s kappa was κ = 0.92.Question:
“After receiving the warning message, please describe how or if your strategy changed when choosing your PIN.”

Code Name Frequency Description Use Case Strategy Sample from the Study

Same 37 Same strategy for both Selection Date “Birthday of relative.”
Change Date “Chose another birthday.”

Minor 51 Slight modification of strategy Selection Meaning “It’s one I remember, a number with personal significance.”
Change Meaning++ “I changed one number in the sequence to get the app to accept it.”

New 95 New strategy that is different Selection Date “I used my girlfriend’s birthday.”
Change Phone “I changed my strategy to a memorable phone number’s last 4 digits.”

A.5 Feelings and Sentiments
Table 14. As part of our questionnaire, we asked participants for 3 feelings about the blocklist warning. We
coded and analyzed these feelings from a sample of 182 participants that encountered a blocklist. We also
included 21 participants that only imagined hitting a blocklist. Below, we list the top 20 reported feelings. Two
coders independently coded the data and the level of agreement between the coders, measured by Cohen’s
kappa was κ = 0.98. Question: “Please describe three general feelings or reactions that you had after you received
this warning message.” or “Please describe three general feelings or reactions that you would have had after you
received this warning message.”

Code Name Frequency Sample from the Study Sentiment

Annoyance 125 “Annoyed by this message.” Negative
Worried 81 “I am worried about my PIN’s security.” Negative

Frustrated 56 “This message frustrates me.” Negative
Surprised 53 “Surprised to see this message.” Neutral

Indifference 48 “Don’t care about this message.” Negative
Thinking 47 “Thinking about my PIN’s security.” Neutral

Acceptance 46 “I agree with this message.” Positive
Fear 43 “Afraid of attackers.” Negative

Compelling 41 “Motivated to change my PIN.” Positive
Doubt 39 “I distrust the veracity of this message.” Negative

Confusion 35 “This message is confusing.” Negative
Angry 32 “Angry this message appeared.” Negative

Cautious 30 “Cautious about my PIN.” Positive
Happy 24 “Happy my PIN will be stronger.” Positive

Curiosity 19 “I wonder why this message appeared.” Positive
Shame 19 “Ashamed my PIN wasn’t strong.” Negative

Remember 17 “I might forget my PIN.” Neutral
Alert 15 “I’m now more aware.” Neutral

Disappointed 14 “Disappointed seeing this warning.” Negative
Safe 13 “Confident this PIN will be safe.” Positive
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